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Alternative paradigm for physical computing
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We identify a different class of physical systems that are able to form universal logic gates. By analogy with
Si~100! surface dimers, we present a model to analyze the trajectories of the fixed points~interpreted as logic
states! under variation of the basic parameters. Using the perspective of catastrophe theory, we show that
information processing is the result of cycling the parameters of such systems through a path containing a
cusp-type catastrophe. We apply this analysis to the construction of an example based on magnetic memory.
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I. INTRODUCTION

Because current bulk semiconductor-based designs ar
capable of miniaturization past a closely approaching lim
we must look to different physical systems capable of lo
operations as replacements. Research in this area has fo
on molecular electronics@1#, cellular automata@2#, nano-
tubes@3#, DNA @4#, etc. In choosing new avenues to explo
it would be helpful to have a guiding principle and a gene
mechanism for information processing. In other words,
would like to search not only for specific alternative physic
systems, but an entirely different paradigm for logic ope
tions evident in a wide range of physical systems. Once
have identified which ones satisfy the requirements of
paradigm, technology can choose for us which system
most likely to succeed in practice.

In this paper we propose an alternative informatio
processing paradigm that utilizes a class of inheren
bistable systems. The bistability persists regardless of
inputs to the logic gate; a system parameter must be cy
to force the computation. We exploit an analytic model o
system within this class to analyze the parametrized mo
of the fixed points~which represent the distinct digital state!
in a bifurcation diagram. The analysis shows that the eff
of forcing the system past ‘‘catastrophic points,’’ where o
of these fixed points disappears, can be interpreted as aNOR

universal logic gate. After identifying further general r
quirements for equivalent systems, we construct an exam
from a ferromagnetic cluster array.

II. MODEL

Cho and Joannopoulos originally proposed the use of
Si~100! surface as an ultrahigh density memory storage m
dium by interpreting the up/down buckled states of in
vidual dimers as digital bits of information@5#.

Based on this idea, Appelbaumet al. have shown, using
density functional theory~DFT! calculations of total energy
that the system of three colinear buckled Si~100! surface
dimers and an asymmetrically placed tungsten~W! scanning
tip can be used to produce aNOR logic gate under prope
adiabatic variation of tip position@6#. The two dimers on the
side are inputs to the gate and the center is the output. Th
lowering and raising cycle forces the output dimer to a st
1063-651X/2002/66~6!/066612~4!/$20.00 66 0666
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determined by the inputs in the case that they are in the s
state, or to a state determined by the tip asymmetry in
case that they are different. The important insight, and
point of this paper, is that the mechanism for logic proce
ing here is not necessarily unique to this system. In fact,
general features responsible may show themselves in a
sibly wide and varying class of phenomena. We here atte
to outline the requirements for such an equivalent system

We would like to analyze the motion of the fixed poin
~the states called ‘‘0’’ and ‘‘1’’! of the dimer potential unde
variation of the system parameters, in order to generalize
requirements for aclassof similar systems. However, to d
so by dense calculation of total energy with DFT would
prohibitively expensive. Therefore, we have modeled
dimer potential by a straightforward analytic expression t
retains its important features.

The Si~100! dimer buckles because, after the surface
constructs, there are only enough electrons to form one s
sp3 ~tetrahedral! hybridized orbitals. The remaining dime
atom, electron deficient, can only formsp2 ~planar! orbitals.
The planar configuration of the latter atom forces it low
than the former, with respect to the bulk. Thus, the dim
buckling is directly controlled by the location of one electro
orbital that can move from one dimer atom to the oth
flipping the dimer. A model to predict the dimer bucklin
orientation, therefore, can focus on the equilibrium positio
of the electron potential~in the semiclassical sense!. This
potential is formed from the sum of the local interatom
potentials from the dimer atoms themselves, the bulk Si,
nearby dimers on the surface, and a weakly interacting W

Our model for the dimer is based on a purely mechan
bistable system@7#. The electron orbital is modeled by
bead that is constrained to move on a wire between the di
atoms, and is held by a fixed, pivoted spring of relax
length L and spring constantk. See Fig. 1. If the spring is
compressed whenx50, two equivalent stable minima wil
appear for x,0 and x.0. However, the dimer energ
minima arenot equivalent. This evident asymmetry is a r
sult of the influence of the orientation of nearby dimers. T
potential due to this interaction may be quite complica
owing to the fact that it is coupled through intermediate l
tice atoms. However, we can model it sufficiently by reta
ing just the first-order term of an expansion, which is a
sumed to be the dominating term.~The mechanical analog to
©2002 The American Physical Society12-1
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this interaction is a constant force like gravity, which b
comes important if the wire is at an angle from horizonta!
This parameter may be determined by fitting the potentia
that obtained using DFT calculations.

The remaining interaction is from the W tip. From DF
calculations of total energy we deduce that the interactio
attractive. The W tip atom forms a partial bond with the
atoms, by ‘‘sharing’’ valence electrons. We take our ba
model from the Morse molecular potential@8#:

U~x!5De@12e2(x2r e)/L8#2

5De~122e2(x2r e)/L81e22(x2r e)/L8!.

Assuming the Si-W distance remains much larger than
equilibrium distancer e , we can, to a good approximation
discard the second-order term. To first order then,

U~x!'De~122e2(x2r e)/L8!.

Thus our model for the total force on the electron orbi
is ~neglecting constant terms!

F5Finputs1Fspring1Ftip5ka~hinputA1hinputB!

2k~x2L !cos~f!2D8e2 l /L8sin~f8!.

In unitless variables, we have

F5kaS hinputA1hinputB2uS 12
R

A11u2D
2Te2[A(u1v)21w2]/R8

u1v

A~u1v !21w2D . ~1!

whereu5x/a, w5y/a, v5x8/a, R5L/a, andR85L8/a. T
and hinputA/ inputB are tunable parameters that represent
strength of the Si-W interatomic potential and the influen
of the input dimers, respectively.

III. DYNAMICS

To illustrate information processing with this system, r
fer to Fig. 2. Here we have numerically integrated Eq.~1!
with Gaussian quadrature to obtain a potential energy cu

FIG. 1. Left: The mechanical analog to Si~100! surface dimers
we analyze, with appropriate variables labeled.Right: A schematic
of a buckled dimer and tungsten scanning probe system, with fi
electron orbitals shown as ovals with two dots.
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as a function of electron orbital positionu. We use paramete
values ofR51.11, R850.305, v520.1, andT51.0. The
asymmetry that depends on the nearby input dimer confi
ration has a value ofhinputA/ inputB50.0055 for 1, and
hinputA/ inputB520.0055 for 0.~We define 0 to correspond t
the minima atx.0 and 1 to the minima atx,0.! These
parameters have been chosen such that the energy of
mechanical system as a function ofu has similar features a
the energy of the Si-dimer system as a function of dim
angle~see Fig. 2 of Ref.@6#!.

Interpreting the minima of each curve at constantw as
distinct states, we see that as the tip is lowered~parameterw
is decreased!, the potentials are reduced to one unique sta
state. Raising the tip completes a cycle. Regardless of w
state the system started in at largew, the final state will be
the one that survived the ‘‘catastrophe’’ when the other d
appeared.

Let us now analyze the trajectories of these critical poi
as the tip height parameter is varied. See, for example, Fi
top, corresponding to (inputA,inputB)5(0,1). Here we
have numerically solved for the roots of Eq.~1!, using the
Van Wijngaarden–Dekker–Brent algorithm@9#. The param-
eters are the same as above, withhinputA1hinputB50. We
see that reducing the tip height parameter adiabatically fo
the system past a catastrophe nearw50.85 where one stable
minimum and the unstable maximum annihilate each oth
Starting on this stable branch 1 at largew, the system will
follow the path towards this point. Past this cusp-type cat
trophe, only one stable state remains i.e., 0. The sys
quickly relaxes to this new branch.

When the cycle reverses its path, there is no way for
system to deviate from this locus of connected critical poin
At the end of the cycle, the system does not return to
starting point, but remains in the other stable minimum. T

d

FIG. 2. The potential energy curves for inputsA andB5(0,1)
(top), ~0,0! (middle), and ~1,1! (bottom) for the Si~100! dimer
model. At large tip distancew, the system is always bistable. Past
critical value, however, one stable minimum disappears.
2-2
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hysteresis is responsible for information processing; the
sult of the logic operation with inputs 0 and 1 is 0. Compa
son of Fig. 3top, middle, andbottomshows that the same ti
lowering cycle results in a final state determined solely
the inputs. The association between the input and ou
states for all possibilities is analogous to the logicalNOR

gate,1 whose ‘‘truth table’’ is shown in Fig. 4top. The NOR

gate is a universal logic gate that can be used to form
other logic gate.

IV. DISCUSSION

We now discuss the salient features of this model in or
to generalize the requirements for similar systems.

Clearly, we require a bistable system wi
antiferromagnetic2 interaction with the inputs~in this case Si
dimers!. We also require a mechanism for destroying t
bistability of the output without removing the asymmetry~W
tip!. However, the influence of the inputs are additive,
when the inputs are opposite~0,1!, we need a residual asym
metry to pin the system to a definite state. In the mo
above, this asymmety is provided by the shift of the tip lo
ering axis from the center of the wire. These requireme
result in a bifurcation diagram with the general topology
connected minima shown in Fig. 3.

1By switching the definition of 0 and 1, this gate becomes aNAND

gate. We choose the current convention for comparison with R
@6#.

2A ferromagnetic interaction would result in the noninverting~and
thus nonuniversal! logic gatesAND or OR.

FIG. 3. Bifurcation diagrams corresponding to the potential
ergy curves in Fig. 2. Asw adiabatically decreases, a stable min
mum and an unstable maximum annihilate each other, leaving
one fixed point. Whenw increases, the system stays on that sta
branch. This hysteresis is determined by the inputs in a way th
equivalent to aNOR logic gate.
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Since the input values are arbitrary, the parameter tha
cycled must pass through the catastrophe points of all p
sible bifurcation diagrams. In the model discussed abo
therefore, the tip height parameterw must cycle from a value
of at least 1.06 to a value of at most 0.84.

Taking the above requirements into consideration, we
now give an example based on a very familiar bistable s
tem, the uniaxial magnet.

Consider three such antiferromagnetically coupled m
nets in close proximity along a one-dimensional array@10#.
See Fig. 4bottom. The easy magnetization axis of the ma
nets is along the direction perpendicular to the array dim
sion. The information is stored in the up/down orientation
the magnetization of these magnets.

The stray field from its neighbors~the inputs! determines
the asymmetry in the energy diagram of the middle mag
~the output!. To remove the energetic barrier between the t
stable magnetization states, and cause the necessary cat
phe, a localH field perpendicular to the easy axis can
turned on adiabatically. When the input magnets are a
aligned, their influences cancel. To provide a residual as
metry, a biasing background magnetic field aligned with
easy axis can be used.

We use the Stoner-Wohlfarth model@11# to describe the
energy of the middle~output! magnet as a function of its
magnetization orientation:

f.

-

ly
e
is

FIG. 4. Above: The truth table for aNOR gate.Below: Three
collinear, antiferromagnetically coupled, anisotropic magnets are
example of a system that fulfills the requirements of the alterna
paradigm. The geometry and model variables are shown here.
2-3
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E}E0sin2u2m~HinputA1HinputB2Hbias!cosu2mH'sinu,

whereHinputA1HinputB is the sum of the magnitudes of th
stray fields from nearby input magnets,Hbias is the magni-
tude of the parallel bias field, andH' is the magnitude of the
perpendicular field.u is the angle between the easy axis a
the magnetic momentmW . The first term represents the sha
or crystal anisotropy effect, and the other terms are sim
dipole interaction energies. The roots of the derivative of t
function are the stable points; they are shown in Fig. 5 i
bifurcation diagram, parametrized by the magnitude ofH' .
For this example, we use parametersE051, m51, Hbias
50.1, andHinputA/ inputB520.075 for 1 and 0.075 for 0
Comparison with Fig. 3 reveals that the basic topology of
branches is identical. Therefore we see that this well kno
system is capable of being used as a universalNOR gate; one
has only to cycle the perpendicular fieldH' at the output
magnet from the lowest catastrophe point ('1.25) through
the highest catastrophe point ('1.75).

V. CONCLUSION

We have shown the generalization of a system capabl
forming a universalNOR gate, and analyze it from the pe
spective of catastrophe theory. After establishing basic
quirements, we give a simple and well-known example t
can be interpreted as a physicalNOR gate.

We conclude on an interesting but speculative note. Th
is no reason to assume that this mechanism for informa
processing should be unique to just bistable systems.
tems with more minima and the features outlined abo
should be capable of three- or higher-valued logic ope
M

,

V
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tions. It remains to be seen if the correct topology of t
bifurcation diagrams involved is a physical possibility.
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FIG. 5. Bifurcation diagram of the magnet system, parametri
by a perpendicular field. The topology of connected fixed points
this parameter space is exactly the same as in the Si~100! dimer
model. Therefore, this system can also be interpreted as aNOR logic
gate.
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